References#
Hobbs, P. V., and J. M. Wallace, 1977: Atmospheric Science: An Introductory Survey. Academic Press, 350 pp.
Hobbs, P. V., and J. M. Wallace, 2006: Atmospheric Science: An Introductory Survey. 2nd ed. Academic Press, 504 pp.
National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, and U. S. Air Force, 1976: U. S. Standard Atmosphere 1976, U.S. Government Printing Office, Washington, DC.
ANDERSON et al. 1986 AFGL Atmospheric Constituent Profiles (0.120km): ResearchGate PDF, AFGL-TR-86-0110
Payne, V. H., Mlawer, E. J., Cady-Pereira, K. E., and Moncet, J.-L.: Water vapor continuum absorption in the microwave, IEEE T. Geosci. Remote, 49, 2194–2208, https://doi.org/10.1109/TGRS.2010.2091416, 2011.
Alduchov, O. A., and R. E. Eskridge, 1996: Improved Magnus’ form approximation of saturation vapor pressure. J. Appl. Meteor., 35, 601–609, http://journals.ametsoc.org/doi/abs/10.1175/1520-0450%281996%29035%3C0601%3AIMFAOS%3E2.0.CO%3B2.
Magnus, G., 1844: Versuche über die Spannkräfte des Wasserdampfs. Ann. Phys. Chem., 61, 225 – 247, http://onlinelibrary.wiley.com/doi/10.1002/andp.18441370202/abstract.
Bradford R. Bean, E. J. Dutton: Radio Meteorology - Superintendentof Documents, U.S.GovernmentPrint.Office, 1966 - 435 pagine, https://books.google.it/books?id=Jw9RAAAAMAAJ&printsec=frontcover&hl=it&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false.
Jacobson, M. Z. Fundamentals of atmospheric modelling. Cambridge Eds., 2005. http://www.dca.ufcg.edu.br/mna/jacobson.pdf
Cimini, D., Rosenkranz, P. W., Tretyakov, M. Y., Koshelev, M. A., and Romano, F.: Uncertainty of atmospheric microwave absorption model: impact on ground-based radiometer simulations and retrievals, Atmos. Chem. Phys., 18, 15231–15259, https://doi.org/10.5194/acp-18-15231-2018, 2018.
Cimini, D., Hocking, J., De Angelis, F., Cersosimo, A., Di Paola, F., Gallucci, D., Gentile, S., Geraldi, E., Larosa, S., Nilo, S., Romano, F., Ricciardelli, E., Ripepi, E., Viggiano, M., Luini, L., Riva, C., Marzano, F. S., Martinet, P., Song, Y. Y., Ahn, M. H., and Rosenkranz, P. W.: RTTOV-gb v1.0 – updates on sensors, absorption models, uncertainty, and availability, Geosci. Model Dev., 12, 1833–1845, https://doi.org/10.5194/gmd-12-1833-2019, 2019.
Rosenkranz, P. W.: Line-by-line microwave radiative transfer (non-scattering), Remote Sens. Code Library, https://doi.org/10.21982/M81013, 2017.
Rosenkranz, P. W.: A Model for the Complex Dielectric Constant of Supercooled Liquid Water at Microwave Frequencies, IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 3, pp. 1387-1393, March 2015, https://doi.org/10.1109/TGRS.2014.2339015.
P.W. Rosenkranz, Interference coefficients for overlapping oxygen lines in air, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 39, Issue 4, 1988, Pages 287-297, https://doi.org/10.1016/0022-4073(88)90004-0.
Schroeder J.A. and E.R. Westwater, Users’ Guide to WPL Microwave Radiative Transfer Software, NOAA Technical Memorandum ERL WPL-213, 1991, https://repository.library.noaa.gov/view/noaa/32511
Schroeder J.A. and E.R. Westwater, “Guide to Microwave Weighting Function Calculations,” U.S. Dept. ofCommerce, National Oceanic and Atmospheric Administration, Wave Propagation Laboratory, July 1992.
Thayer, G. D. “An improved equation for the radio refractive index of air”. Radio Science, 9(10), 803-807. 1974.
Westwater, Ed R., Microwave emission from clouds, United States, National Oceanic and Atmospheric Administration;Environmental Research Laboratories (U.S.), 1972, https://repository.library.noaa.gov/view/noaa/22891
Liebe, Hans J. and Donald H. Layton. “Millimeter-wave properties of the atmosphere: Laboratory studies and propagation modeling.” (1987).
Liebe H.J., G.A. Hufford and T. Manabe, “A model fo r the complex permittivity of water at frequenciesbelow 1 THz”, Internat. J. Infrared and mm Waves, Vol. 12, pp. 659-675 (1991).
Liebe, H.J., G.A. Hufford, and M.G. Cotton, Propagation Modeling of Moist Air and SuspendedWater/Ice Particles at Frequencies Below 1000 GH z. AGARD Conference Proc. 542, AtmosphericPropagation Effects through Natural and Man-Made Obscurants for Visible to MM-Wave Radiation,pp.3.1-3.10 (1993).
Boissoles, C. Boulet, R.H. Tipping, Alex Brown, Q. Ma, Theoretical calculation of the translation-rotation collision-induced absorption in N2–N2, O2–O2, and N2–O2 pairs, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 82, Issues 1–4, Pages 505-516, https://doi.org/10.1016/S0022-4073(03)00174-2, 2003.
Borysow, A., Frommhold, L., 1986, Collision-induced Rototranslational Absorption Spectra of N 2–N 2 Pairs for Temperatures from 50 to 300 K. The Astrophysical Journal 311, 1043. doi:10.1086/164841.
Mätzler, C., Rosenkranz, P. W., Battaglia, A., and Wigneron, J. P.:Thermal microwave radiation – applications for remote sensing,no. 52 in IET, Electromagnetic Waves, London, UK, 2006.
Koshelev, M. A., Vilkov, I. N., and Tretyakov, M. Yu.: Pressure broadening of oxygen fine structure lines by water, J. Quant. Spectrosc. Ra., 154, 24–27, https://doi.org/10.1016/j.jqsrt.2014.11.019, 2015.
Koshelev, M. A., Serov, E. A., Parshin, V. V., and Tretyakov, M. Yu.: Millimeter wave continuum absorption in moist nitrogen at temperatures 261–328 K, J. Quant. Spectrosc. Ra., 112, 2704–2712, https://doi.org/10.1016/j.jqsrt.2011.08.004, 2011.
Koshelev, M. A., Golubiatnikov, G. Yu., Vilkov, I. N., and Tretyakov, M. Yu.: Line shape parameters of the 22-GHz water line for accurate modeling in atmospheric applications, J. Quant. Spectrosc. Ra., 205, 51–58, https://doi.org/10.1016/j.jqsrt.2017.09.032, 2018.
M.A. Koshelev, T. Delahaye, E.A. Serov, I.N. Vilkov, C. Boulet, M.Yu. Tretyakov, Accurate modeling of the diagnostic 118-GHz oxygen line for remote sensing of the atmosphere, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 196, 2017, Pages 78-86, https://doi.org/10.1016/j.jqsrt.2017.03.043.
Turner, D. D., Cadeddu, M. P., Löhnert, U., Crewell, S., and Vogelmann, A. M.: Modifications to the Water Vapor Continuum in the Microwave Suggested by Ground-Based 150-GHz Observations, IEEE T. Geosci. Remote, 47, 3326–3337, https://doi.org/10.1109/TGRS.2009.2022262, 2009.
Tretyakov, M. Yu.: Spectroscopy underlying microwave remote sensing of atmospheric water vapor, J. Mol. Spectrosc., 328, 7–26, https://doi.org/10.1016/j.jms.2016.06.006, 2016.
Alduchov, O. A., and R. E. Eskridge, 1996: Improved Magnus Form Approximation of Saturation Vapor Pressure. J. Appl. Meteor. Climatol., 35, 601–609, https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2.
T.A. Odintsova, A.O. Koroleva, A.A. Simonova, A. Campargue, M.Yu. Tretyakov. The atmospheric continuum in the “terahertz gap” region (15–700 cm−1): Review of experiments at SOLEIL synchrotron and modeling. Journal of Molecular Spectroscopy, 2022, 386, pp.111603. ⟨https://doi.org/10.1016/j.jms.2022.111603⟩. ⟨hal-03865589⟩
Galanina, T. A., Koroleva, A. O., Simonova, A. A., Campargue, A., and Tretyakov, M. Y., “The water vapor self-continuum in the “terahertz gap” region (15-700 cm-1): Experiment versus MT_CKD-3.5 model”, Journal of Molecular Spectroscopy, vol. 389, 2022. https://doi.org/10.1016/j.jms.2022.111691.
Andrey I. Meshkov, Frank C. De Lucia, Laboratory measurements of dry air atmospheric absorption with a millimeter wave cavity ringdown spectrometer, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 108, Issue 2, 2007, Pages 256-276, ISSN 0022-4073, https://doi.org/10.1016/j.jqsrt.2007.04.001.
E.A. Serov, T.A. Galanina, A.O. Koroleva, D.S. Makarov, I.S. Amerkhanov, M.A. Koshelev, M.Yu. Tretyakov, D.N. Chistikov, A.A. Finenko, A.A. Vigasin, Continuum absorption in pure N2 gas and in its mixture with Ar, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 328, 2024, 109172, ISSN 0022-4073, https://doi.org/10.1016/j.jqsrt.2024.109172.